Extensions 1→N→G→Q→1 with N=C5 and Q=(C22×C8)⋊C2

Direct product G=N×Q with N=C5 and Q=(C22×C8)⋊C2
dρLabelID
C5×(C22×C8)⋊C2160C5x(C2^2xC8):C2320,909

Semidirect products G=N:Q with N=C5 and Q=(C22×C8)⋊C2
extensionφ:Q→Aut NdρLabelID
C51((C22×C8)⋊C2) = (C2×D4).7F5φ: (C22×C8)⋊C2/C2×D4C4 ⊆ Aut C5160C5:1((C2^2xC8):C2)320,1113
C52((C22×C8)⋊C2) = (C2×D4).8F5φ: (C22×C8)⋊C2/C2×D4C4 ⊆ Aut C5160C5:2((C2^2xC8):C2)320,1114
C53((C22×C8)⋊C2) = (C2×Q8).5F5φ: (C22×C8)⋊C2/C2×Q8C4 ⊆ Aut C5160C5:3((C2^2xC8):C2)320,1125
C54((C22×C8)⋊C2) = C22⋊C8⋊D5φ: (C22×C8)⋊C2/C22⋊C8C2 ⊆ Aut C5160C5:4((C2^2xC8):C2)320,354
C55((C22×C8)⋊C2) = (C22×C8)⋊D5φ: (C22×C8)⋊C2/C22×C8C2 ⊆ Aut C5160C5:5((C2^2xC8):C2)320,737
C56((C22×C8)⋊C2) = C4.89(C2×D20)φ: (C22×C8)⋊C2/C2×M4(2)C2 ⊆ Aut C5160C5:6((C2^2xC8):C2)320,756
C57((C22×C8)⋊C2) = (D4×C10).24C4φ: (C22×C8)⋊C2/C2×C4○D4C2 ⊆ Aut C5160C5:7((C2^2xC8):C2)320,861


׿
×
𝔽